Закрыть
Авторизация
Логин:
Пароль:

Забыли пароль?

МБОУ «Лицей Акбулакского района Оренбургской области»

Геометрия

Рабочая программа по геометрии для 9 класса МБОУ «Лицей Акбулакского района Оренбургской области» составлена на основе примерной программы общеобразовательных учреждений по геометрии 7–9 классы, к учебному комплексу для 7-9 классов (авторы Л.С. Атанасян,   В.Ф. Бутузов, С.В. Кадомцев и др., составитель Т.А. Бурмистрова – М: «Просвещение», 2008. – с. 19-21); примерной программы для общеобразовательных школ, гимназий, лицеев математика 5-11 классы по геометрии 7–9 классы, к учебному комплексу для 7-9 классов (авторы Л.С. Атанасян,   В.Ф. Бутузов, С.В. Кадомцев и др., составители Г.М. Кузнецова, Н.Г. Миндюк– М: «Дрофа», 2004 – с. 195).
Программа направлена на достижение следующих целей:
§ овладение системой математических знаний и умений, необходимых для применения практической деятельности изучения смежных дисциплин, продолжения образования;
§ интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, пространственных представлений;
§ формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;
§ воспитание культуры личности, отношения к математике как части общечеловеческой культуры, понимание значимости математики для научно технического прогресса;
развитие представлений о полной картине мира, о взаимосвязи математики с другими предметами.
В ходе обучения геометрии по данной программе с использованием учебника и методического пособия для учителя, решаются следующие задачи:
§ систематическое изучение свойств геометрических фигур на плоскости;
§ формирование пространственных представлений; развитие логического мышления и подготовка аппарата для изучения смежных дисциплин (физика, черчение и др.) и курса стереометрии в старших классах;
§ овладение конкретными знаниями необходимыми для применения в практической деятельности.
Нормативными документами для составления рабочей программы являются:
1.    Закон «Об образовании в РФ» N 273-ФЗ принят 21 декабря 2012 г.
2.    Приказ Минобразования России от 5.03.2004г. №1089 «Об утверждении федерального компонента государственных образовательных стандартов начального общего, основного общего и среднего (полного) общего образования»
3.    Программы общеобразовательных учреждений. Геометрия 7 – 9 кл. / Сост. Т.А. Бурмистрова /   М.: «Просвещение», 2011
4.    Учебный план образовательного учреждения МБОУ «Лицей Акбулакского района Оренбургской области»;
5.    Образовательная программа образовательного учреждения МБОУ «Лицей Акбулакского района Оренбургской области»;
Положение о рабочей программе учебных курсов, предметов, дисциплин(модулей) МБОУ «Лицей Акбулакского района Оренбургской области».
7.    Учебник: Геометрия 7 – 9. Учебник для общеобразовательных учреждений. / Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев,     Э.Г.Позняк, И.И. Юдина. / 2-е изд - М.: Просвещение, 2014– 383 с.:ил.
Место предмета в федеральном базисном учебном плане
Геометрия – один из важнейших компонентов математического образования. Она необходима для приобретения конкретных знаний о пространстве и практически значимых умений, формирования языка описания объектов окружающего мира, развития пространственного воображения и интуиции, математической культуры, эстетического воспитания учащихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства.
Курс геометрия входит в число дисциплин, включенных в учебный план.
Согласно федеральному базисному учебному плану для образовательных учреждений Российской Федерации на изучение геометрии в 9 классе отводится 2 ч в неделю, всего 70 ч.
            Требования к уровню подготовки учащихся
В курсе геометрии 9-го класса формируется понятие вектора. Особое внимание уделяется выполнению операций над векторами в геометрической форме. Учащиеся дополняют знания о треугольниках, сведениями о методах вычисления элементов произвольных треугольниках, основанных на теоремах синусов и косинусов. Даются систематизированные сведения о правильных многоугольниках, об окружности, вписанной в правильный многоугольник и описанной. Особое место занимает решение задач на применение формул. Даются первые знания о движении, повороте и параллельном переносе. Серьезное внимание уделяется формированию умений рассуждать, делать простые доказательства, давать обоснования выполняемых действий. Параллельно закладываются основы для изучения систематических курсов стереометрии, физики, химии и других смежных предметов.
В результате изучения курса геометрии 9-го класса учащиеся должны уметь:
§   пользоваться геометрическим языком для описания предметов окружающего мира;
§   распознавать геометрические фигуры, различать их взаимное расположение;
§   изображать геометрические фигуры; выполнять чертежи по условию задач; осуществлять преобразование фигур;
§   вычислять значения геометрических величин (длин, углов, площадей), в том числе: определять значение тригонометрических функций по заданным значениям углов; находить значения тригонометрических функций по значению одной из них; находить стороны, углы и площади треугольников, дуг окружности, площадей основных геометрических фигур и фигур, составленных из них;
§   решать геометрические задания, опираясь на изученные свойства фигур и отношений между ними, применяя дополнительные построения, алгебраический и тригонометрический аппарат, соображения симметрии;
§   проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;
§   решать простейшие планиметрические задачи в пространстве.
КРИТЕРИИ И НОРМЫ ОЦЕНКИ ЗНАНИЙ, УМЕНИЙ И НАВЫКОВ ОБУЧАЮЩИХСЯ
1. Оценка письменных контрольных работ обучающихся по математике.
Ответ оценивается отметкой «5», если:
Ø работа выполнена полностью;
Ø в логических рассуждениях и обосновании решения нет пробелов и ошибок;
Ø в решении нет математических ошибок (возможна одна неточность, описка, которая не является следствием незнания или непонимания учебного материала).
Отметка «4» ставится в следующих случаях:
Ø работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки);
Ø допущены одна ошибка или есть два – три недочёта в выкладках, рисунках, чертежах или графиках (если эти виды работ не являлись специальным объектом проверки).
Отметка «3» ставится, если:
Ø допущено более одной ошибки или более двух – трех недочетов в выкладках, чертежах или графиках, но обучающийся обладает обязательными умениями по проверяемой теме.
Отметка «2» ставится, если:
Ø допущены существенные ошибки, показавшие, что обучающийся не обладает обязательными умениями по данной теме в полной мере.
Отметка «1» ставится, если:
Ø работа показала полное отсутствие у обучающегося обязательных знаний и умений по проверяемой теме или значительная часть работы выполнена не самостоятельно.
Учитель может повысить отметку за оригинальный ответ на вопрос или оригинальное решение задачи, которые свидетельствуют о высоком математическом развитии обучающегося; за решение более сложной задачи или ответ на более сложный вопрос, предложенные обучающемуся дополнительно после выполнения им каких-либо других заданий.
2.Оценка устных ответов обучающихся по математике
Ответ оценивается отметкой «5», если ученик:
Ø полно раскрыл содержание материала в объеме, предусмотренном программой и учебником;
Ø изложил материал грамотным языком, точно используя математическую терминологию и символику, в определенной логической последовательности;
Ø правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;
Ø показал умение иллюстрировать теорию конкретными примерами, применять ее в новой ситуации при выполнении практического задания;
Ø продемонстрировал знание теории ранее изученных сопутствующих тем, сформированность и устойчивость используемых при ответе умений и навыков;
Ø отвечал самостоятельно, без наводящих вопросов учителя;
Ø возможны одна – две неточности при освещение второстепенных вопросов или в выкладках, которые ученик легко исправил после замечания учителя.
Ответ оценивается отметкой «4», если удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков:
Ø в изложении допущены небольшие пробелы, не исказившее математическое содержание ответа;
Ø допущены один – два недочета при освещении основного содержания ответа, исправленные после замечания учителя;
Ø допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные после замечания учителя.
Отметка «3» ставится в следующих случаях:
Ø неполно раскрыто содержание материала (содержание изложено фрагментарно, не всегда последовательно), но показано общее понимание вопроса и продемонстрированы умения, достаточные для усвоения программного материала (определены «Требованиями к математической подготовке обучающихся» в настоящей программе по математике);
Ø имелись затруднения или допущены ошибки в определении математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;
Ø ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;
Ø при достаточном знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.
Отметка «2» ставится в следующих случаях:
Ø не раскрыто основное содержание учебного материала;
Ø обнаружено незнание учеником большей или наиболее важной части учебного материала;
Ø допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.
Отметка «1» ставится, если:
Ø ученик обнаружил полное незнание и непонимание изучаемого учебного материала или не смог ответить ни на один из поставленных вопросов по изученному материалу.
3. Общая классификация ошибок.
При оценке знаний, умений и навыков обучающихся следует учитывать все ошибки (грубые и негрубые) и недочёты.
3.1. Грубыми считаются ошибки:
- незнание определения основных понятий, законов, правил, основных положений теории, незнание формул, общепринятых символов
обозначений величин, единиц их измерения;
- незнание наименований единиц измерения;
- неумение выделить в ответе главное;
- неумение применять знания, алгоритмы для решения задач;
- неумение делать выводы и обобщения;
- неумение пользоваться первоисточниками, учебником и справочниками;
- вычислительные ошибки, если они не являются опиской;
- логические ошибки.
3.2. К негрубым ошибкам следует отнести:
- неточность формулировок, определений, понятий, теорий, вызванная неполнотой охвата основных признаков определяемого понятия или   заменой одного - двух из этих признаков второстепенными;
- нерациональный метод решения задачи или недостаточно продуманный план ответа (нарушение логики, подмена отдельных основных вопросов второстепенными);
- нерациональные методы работы со справочной и другой литературой;
- неумение решать задачи, выполнять задания в общем виде.
3.3. Недочетами являются:
- нерациональные приемы вычислений и преобразований;
- небрежное выполнение записей, чертежей, схем, графиков.

Учителя

ЧАЕВА Валентина Заутпаевна, образование высшее педагогическое, учитель математики высшей категории. 

Награждена Почетными грамотами районного отдела образования и Главного управления образования Оренбургской области. 

Работала учителем математики 1 категории Шаповаловской средней школы, заместителем директора по учебно-воспитательной работе в ГОУ "Акбулакский детский дом", заместителем директора по учебно-воспитательной работе 1 категории в ГОУ НПО ПУ № 51. 

Председатель профкома лицея с 2012 г. 
Общий стаж 31 год, педстаж 31 год.

Специальность по диплому - учитель математики. 

Курсы БПК 2011 г., «Внедрение ФГОС ООО» 2015 г., «Подготовка к ЕГЭ по математике» 2015 г., Программа подготовки председателей и членов предметных комиссий по проверке выполнения заданий с развернутым ответом экзаменационных работ основного государственного экзамена с присвоением статуса «Старший эксперт» 2016 г., 2017г.